Спецтехника

 Защита от Лазерного (оптического) метода получения информации #2

 

Данное устройство вызывает вибрацию стекла с различной частотой, тем самым устраняя основной недостаток простейшего модулятора. Оно выполнено на двух цифровых схемах 561 серии. В качестве вибропреобразователя используется пьезокерамический преобразователь. Принципиальная схема устройства приведена на рис. 15.

 

 

Модулятор собран на микросхемах К561ЛН2 и К561ИЕ8. Генератор тактовых импульсов собран на элементах DD1.1, DD1.2, резисторе R1 и конденсаторе С1 по схеме несимметричного мультивибратора. С выхода генератора тактовые импульсы поступают на вход счетчика DD2 типа К561ИЕ8. Эта микросхема имеет встроенный дешифратор, поэтому напряжение высокого уровня поочередно появляется на выходах счетчика в соответствии с количеством пришедших импульсов. Допустим, что после прихода очередного тактового импульса уровень логической единицы появился на выходе 2 микросхемы DD2 (выв. 4). На остальных выходах присутствует уровень логического нуля. Положительное напряжение начинает заряжать конденсатор С2 по цепи VD3, R4, R12. При достижении на конденсаторе С2 напряжения, достаточного для открывания транзистора VT1 типа КТЗ15, последний открывается, и на выходе элемента DD1.4 появляется уровень логического нуля. Конденсатор С2 быстро разряжается через диод VD11 типа КД522. Транзистор VT1 закрывается, и процесс заряда конденсатора С2 возобновляется по той же зарядной цепи. С приходом очередного тактового импульса уровень пол.ожительного напряжения появляется только на выходе 3 (выв. 7). Теперь конденсатор С2 заряжается по цепи VD4, К5, R12. Так как суммарное сопротивление этой цепи меньше, чем сопротивление цепи VD3, R4, R12, то заряд конденсатора С2 до напряжения открывания происходит быстрее. Частота импульсов на выходе этого управляемого генератора увеличивается. Прямоугольные импульсы поступают на вибронреобразователь ZQ1, выполненный на основе пьезокерамического преобразователя .

Микросхемы DD1 и DD2 можно заменить на аналогичные - серий 176, 564, 1561. Резисторы - типа МЛТ-0,125. Сопротивления резисторов R2-R11 могут быть любыми из интервала 10 кОм - 1 МОм. Резисторы одинакового номинала лучше не использовать. Диоды VD1-VD11 могут быть любыми, например, КД521, Д9, Д18, КД510 и др. Транзистор VT1 можно заменить на КТ3102. Пьезокерамический преобразователь ZQ1 может быть любой, от игрушек или телефонных аппаратов. Питание устройства осуществляется от батарейки типа "Крона". Вибродатчик ZQ1 приклеивается на стекло клеем "Момент". Сигнал к нему подводится по проводам от элемента DD1.6. Настройка заключается в установке частоты тактового генератора подбором конденсатора С1 или резистора R1. Частота тактовых импульсов выбирается около 2-3 Гц.

Защита от Лазерного (оптического) метода получения информации

Для скрытности проведения перехвата речевых сообщений из помещений могут быть использованы устройства, в которых передача информации осуществляется в оптическом диапазоне. Чаще всего используется невидимый для простого глаза инфракрасный диапазон излучения.

Наиболее сложными и дорогостоящими средствами дистанционного перехвата речи из помещений являются лазерные устройства. Принцип их действия заключается в посылке зондирующего луча в направлении источника звука и приеме этого луча после отражения от каких-либо предметов, например, оконных стекол, зеркал и т. д. Эти предметы вибрируют под действием окружающих звуков и модулируют своими колебаниями лазерный луч. Приняв отраженный от них луч, можно восстановить модулирующие колебания. Исходя из этого, рассмотрим один из достаточно простых, но очень эффективных способов защиты от лазерных устройств. Он заключается в том, чтобы с помощью специальных устройств сделать амплитуду вибрации стекла много большей, чем вызванную голосом человека. При этом на приемной стороне возникают трудности в детектированип речевого сигнала. Ниже приведены схемы и описания некоторых подобных устройств.

 

Этот модулятор питается от сети переменного тока напряжением 220 В. Принципиальная схема модулятора приведена на рис. 14.

Акустический генератор шума

Акустические генераторы шума используются для зашумления акустического диапазона в помещениях и в линиях связи, а также для оценки акустических свойств помещений.

Под "шумом" в узком смысле этого слова часто понимают так называемый белый шум, характеризующийся тем, что его амплитудный спектр распределен по нормальному закону, а спектральная плотность мощности постоянна для всех частот. В более широком смысле под шумом, по ассоциации с акустикой. понимают помехи, представляющие собой смесь случайных и кратковременных периодических процессов. Кроме белого шума выделяют такие разновидности шума, как фликкер-шум и импульсный шум. В генераторах шума используется белый шум, так как даже современны ми способами обработки сигналов этот шум плохо отфильтровывает ся. Ниже приводятся несколько схем различных генераторов шума.

 

Самым простым методом получения белого шума является использование шумящих электронных элементов (ламп, транзисторов, различных диодов) с усилением напряжения шума. Принципиальная схема несложного генератора шума приведена на рис. 13.

 

 

 

Источником шума является полупроводниковый диод - стабилитрон VD1 типа КС168, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 и через конденсатор С1 поступает на инвертирую щий вход операционного усилителя DA1 типа КР140УД1208. На не инвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения выполненного на резисторах R2 и R3. Режим работы микросхемы определяется резистором R5, а коэффициент усиления - резистором R4. С нагрузки усилителя, переменного резистора R6 , усиленное напряжение шума поступает на усилитель мощности, выполненный на микросхеме DA2 типа К174ХА10. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1. Уровень шума регулируется резистором R6.

Блокировка параллельного телефона

 

Предлагаемое релейно-конденсаторное устройство позволяет исключить прослушивание телефонного разговора с параллельно включенного телефонного аппарата. Работа его основана на использовании постоянного тока, протекающего через телефонный аппарат при снятой телефонной трубке (рис. 5.33).

Контакты К2.1 и К1.1 — нормальнозамкнутые. Конденсаторы С1 и С2 обеспечивают прохождение переменной составляющей тока при вызове и во время разговорного соединения. При выборе номиналов конденсаторов важно не допустить, чтобы резонансная частота колебательного контура обмотка реле-конденсатор была равной 25 Гц (частота сигнала вызова) и 450 Гц (частота сигнала зуммера станции.

Простейшее защитное устройство от подключения к телефонной линии

В тех случаях, когда вы хотите защигиться от несанкционированного подключения к телефонной линии более просгым способом, можно воспользоваться схемой, представленной на рис. 5.32.

Рис. 5.32. Простейшее защитное устройство

Это устройство блокирует как набор номера, так и вызывной сигнал. Его удобно выполнить в виде отдельной вилки, подключаемой вместо телефонного аппарата (например, при длительном вашем отсутствии).

 

Устройство защиты от несанкционированного подключения к телефонной линии

 Устройство защиты от несанкционированного подключения к телефонной линии предназначено для кодирования линии индивидуальным одно-, двух-, трехзначным кодом и применяется в тех случаях, когда имеется возможность установить устройство защиты в щитке, колодце, т.е. как можно дальше от охраняемого телефонного аппарата (в идеальном случае — на выходных клеммах АТС). Система охраняет линию «за собой».

Рис. 5.31. Устройство защиты телефона

При этом все посылки вызова, пришедшие с АТС, беспрепятственно допускаются к телефону), но для подключения к линии (ведения разговора, набора номера) на диске телефона (клавиатуре) необходимо набрать индивидуальный код.

Схема системы приведена на рис. 5.31. Устройство собрано на дискретных общедоступных элементах и ИМС серии 561 с микропотреблением в статическом режиме. Вся схема питается от телефонной линии. В режиме ожидания потребление не превышает 10...20 мкА, в режиме приема вызова или обработки кода - 150...200 мкА.

В состав устройства входят:

> узел обработки импульсов вызова на элементах DD1.1, DD1.2;

> узел приема кода на элементах DD1.3, DD1.4;

> ключ включения телефона А1;

> дешифратор кода А2;

> узел питания на элементах VD7, R3, С6, VD8;

> узел питания напряжением 60 В на элементах VD10, R8, VD9, С7, R7,

VD11-VD13.

Рассмотрим работу системы защиты.

Многочастотный генератор шума

Фильтрация периодического сигнала не представляет особого труда и может быть выполнена с помощью простого режекторпого фильтра. А вот использование многочастотпой помехи увеличивает вероятность закрытия полезной информации, т.к. необходимо применение нескольких, в зависимости от количества используемых частот, точно настроенных фильтров. И чем больше количество частот в мпогочастотной помехе, тем более сложно выделить необходимую информацию.

Многочастотный генератор, схема которого изображена на рис. 5.30, можно использовать в качестве генератора шума и устанавливать на стекла и рамы (выходным элементом здесь является пьезокерамический излучатель ZQ1). Практически, это RC-мультивибратор па элементах DD3.1, DD3.2, частота которого регулируется включением дополнительных резисторов R2—R9 параллельно основному R1. Таким образом, частота на выходе увеличивается соответственно уменьшению общего сопротивления резисторов.

Изменение тональности происходит циклически с периодом в восемь тактов, при этом с каждым тактом частота может не обязательно последовательно уменьшаться или увеличиваться, значение ее для каждого такта выбирается произвольно, подбором номиналов R2—R9 соответствующим образом.

Переключение резисторов обеспечивает мультиплексор DD1, в соответствии с двоичным кодом, поступающим на его входы «I», «2>>, «4s> со счетчика DD2. Длительность звучания каждого такта и скорость смены тактов определяется

Рис. 5.30. Многочастотный генератор

Подкатегории


Top.Mail.Ru Яндекс.Метрика
Top